Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chun-Ling Liu,* Ren-Zhang Wang and Shou-Cai Zhang

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail:
chunlingliujl@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.074$
$w R$ factor $=0.211$
Data-to-parameter ratio $=15.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[[aqua(dipyrido[3,2-a:2', 3^{\prime}-c]-phenazine)cobalt(II)]- μ-succinato] monohydrate]

In the title compound, $\left\{\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\right.$-$\left.\mathrm{H}_{2} \mathrm{O}\right\}_{n}$, each $\mathrm{Co}^{\mathrm{II}}$ atom is six-coordinated by two N atoms from one dipyrido[3,2-a:2 $2^{\prime}, 3^{\prime}-c$]phenazine ligand, and by four O atoms from two succinate anions (one chelating bidentate and one monodentate) and one water molecule in a distorted cis- $\mathrm{CoN}_{2} \mathrm{O}_{4}$ octahedral coordination. The $\mathrm{Co}^{\text {II }}$ atoms are bridged by the succinate ligands to generate a helical chain structure. The chain motif is consolidated into a layer structure by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecules and carboxylate O atoms.

Comment

The rational design and synthesis of metal-organic coordination polymers is of great current interest (Eddaoudi et al., 2001). 1,10-Phenanthroline (phen) or its derivatives, as one type of important organic ligands, have been widely used as components in the construction of metal-organic coordination polymers (Chen \& Liu, 2002). The phen derivative dipyrido[3,2-a:2, $\left.2^{\prime}-c\right]$ phenazine, L, possesses an extended aromatic system and its coordination polymers have recently been studied (Zhang \& Sun, 2006). As a continuation of this work, we have prepared the polymeric title compound, $\left[\mathrm{Co}(\right.$ suc $\left.)(L)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, (I) (Fig. 1), from a combination of Co^{2+} ions, succinic acid $\left(\mathrm{H}_{2}\right.$ suc) and L as a secondary chelating ligand.

(I)

Selected bond lengths and angles for (I) are given in Table 1. Each $\mathrm{Co}^{\mathrm{II}}$ atom is six-coordinated by two N atoms from one L ligand, and by four O atoms from two suc ${ }^{2-}$ anions (one

Figure 1
The asymmetric unit of (I), expanded to show the metal coordination. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.]
monodentate and one chelating bidentate) and one water molecule, resulting in a very distorted octahedral coordination. Compound (I) also incorporates an uncoordinated water molecule (Fig. 1). The $\mathrm{C}-\mathrm{O}$ bond lengths of both carboxylate groups of the suc ${ }^{2-}$ dianion suggest delocalization of the bonding and its carbon backbone adopts a gauche conformation.

The $\mathrm{Co}^{\mathrm{II}}$ atoms are bridged by the suc ${ }^{2-}$ ligands to generate a helical chain structure propagating along [010] (Fig. 2) generated by the 2_{1} screw axis. This chain motif is consolidated into a layer structure by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecules and carboxylate O atoms (Table 2).

Experimental

The ligand L was synthesized according to the method of Che et al. (2006). An ethanolic solution (24 ml) of $L(0.5 \mathrm{mmol})$ was added slowly to an aqueous solution (20 ml) of $\mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ and H_{2} suc (1 mmol) with stirring at refluxing temperature. The resulting solution was filtered and the filtrate was allowed to stand in air at room temperature for one week, yielding red crystals of (I) (61% yield based on Co).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot-$
$\quad \mathrm{H}_{2} \mathrm{O}$
$M_{r}=493.33$
Monoclinic, $P 2_{1} / c$
$a=8.6818(17) \AA$
$b=7.8022(16) \AA$
$c=30.968(6) \AA$
$\beta=95.27(3)^{\circ}$

$$
V=2088.9(7) \AA^{3}
$$

$$
Z=4
$$

$$
\begin{aligned}
& L=4 \\
& D_{x}=1.569 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.87 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, red
$0.31 \times 0.27 \times 0.24 \mathrm{~mm}$

Figure 2
A view of the one-dimensional chain structure of (I). Uncoordinated water molecules and H atoms have been omitted.

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.759, T_{\text {max }}=0.816$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.074$
$w R\left(F^{2}\right)=0.211$
$S=1.04$
4741 reflections
310 parameters
H atoms treated by a mixture of independent and constrained refinement

18973 measured reflections 4741 independent reflections 3215 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.074$ $\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.11 P)^{2}\right. \\
&+1.9763 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=3.08 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 2$	$1.250(5)$	$\mathrm{Co} 1-\mathrm{N} 2$	$2.126(4)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.267(5)$	$\mathrm{Co} 1-\mathrm{O} 1$	$2.067(3)$
$\mathrm{C} 4-\mathrm{O} 3$	$1.258(5)$	$\mathrm{Co} 1-\mathrm{O} 1 W$	$2.061(3)$
$\mathrm{C} 4-\mathrm{O} 4$	$1.277(6)$	$\mathrm{Co} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.177(3)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.115(4)$	$\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.147(3)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$77.57(14)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 3^{\mathrm{i}}$	$60.43(12)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$67.6(5)$		
Symmetry code: $(\mathrm{i})-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.			

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 11 W \cdots \mathrm{O} 2$	0.93 (4)	1.75 (3)	2.612 (5)	154 (5)
$\mathrm{O} 1 W-\mathrm{H} 12 W \cdots \mathrm{O} 4^{\text {ii }}$	0.92 (4)	1.76 (2)	2.678 (4)	172 (5)
$\mathrm{O} 2 W-\mathrm{H} 21 W \cdots \mathrm{O}{ }^{\text {iiii }}$	0.92 (7)	2.14 (8)	3.041 (6)	165 (9)
$\mathrm{O} 2 W-\mathrm{H} 22 W \cdots \mathrm{O} 2$	0.92 (7)	1.90 (6)	2.815 (6)	173 (10)

All C-bound H atoms were generated geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the water molecules were located in a difference map and refined with an $\mathrm{O}-\mathrm{H}$ distance restraint of 0.90 (2) \AA. The highest residual electron-density peak is located $0.92 \AA$ from atom H6.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);
molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank Jilin Normal University for supporting this work.

References

Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. \& Chi, H.-J. (2006). Synth. Commun. 36, 2519-2524.

Chen, X.-M. \& Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.
Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, S.-C. \& Sun, J. (2006). Acta Cryst. E62, m3107-m3109.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

